Course Type	Course Code	Name of Course	L	Т	P	Credit
ESC	NGPE102	Introduction to Geophysics	3	0	0	3

Course Objective

Comprehensive understanding of Geophysics and the various geophysical techniques that are implemented in active and passive exploration.

Learning Outcomes

Students would be acquainted with the fundamental principles and applications of Geophysics, and deepen their understanding with a coherent balance of theory, concepts and applications.

Unit	Description of Lectures	Lecture	Learning Outcomes	
No.		Hrs.		
1.	Introduction to Geophysics, Developmental history of	2	Brief introduction to the	
	Geophysics.	Succession	branch of Geophysics	
2.			Elementary information	
	Introduction to the elastic parameters; Variation of the		on Earth's interior	
	elastic parameters with the Earth's internal structure.			
3.	Behavior of different Seismic waves, Effects of the	3	Basic understanding of	
	medium on wave propagation (Dispersion, Reflection and		the wave propagation	
	refraction).			
4.	Seismic Reflection Survey: Principle and Methodology,	5	Introduction of seismic	
	How to acquire data, and select field parameters.		methods used in	
			geophysics	
5.	Seismic Refraction methods: Principle and Methodology,	5	Introduction of seismic	
	Distinction between Reflection and Refraction methods,		methods used in	
	Vertical seismic profiling.		geophysics	
6.	Introduction to Earthquake seismology, Classification of	3	Understanding what are	
	different types of earthquakes, Size of earthquakes,		earthquakes and basics	
	Earthquake precursors.		of how they occur	
7.	Introduction to Geoid and Spheroid; Gravitational fields,	6	Shape of the Earth and	
	Understanding different anomalies and their effect on the		and how gravity is	
0	gravity data.		influenced.	
8.	Introduction to Magnetic fields: Internal and External	6	Magnetic field and	
	origin. Secular variation of the magnetic fields, Different		effect of earth's	
	types of magnetism in rocks.		magnetic fields on rocks	
9.	Electrical Resistivity Method: Theory and Principle;	5	Natural resistivity of the	
	Resistivity of common rocks and minerals, Introduction		earth.	
	to Electrical profiling and Vertical Electrical Sounding.			

Ser

Mails

Sant

Brook.

Introduction to petrophysics and petrophysical parameters, Borehole environment, Classification of different types of logs	4	Use of well logging in geophysics
Total:	42	

Textbooks

- 1. Anderson, D., New Theory of the Earth, Cambridge University Press, 2007
- 2. Lowrie, W., Fundamentals of Geophysics, Cambridge Univ. Press, 2007.
- 3. W.M. Telford, L.P.Geldart, and R.E.Sheriff, Applied geophysics, Cambridge, 1990

Reference Books

- 1. Stanislav Mares, Introduction to applied geophysics, D.Reidel Publishing Co.,1984
- 2. Howell, B. F., An Introduction to Geophysics, Mc-Graw Hill
- 3. Fowler, C.M.R., Solid Earth: An Introduction to Global Geophysics, Cambridge University Press, 2005.

4. Stacey F. and Davis P., Physics of the Earth, Cambridge University Press, 2008.

Dark

Sel